1. Find the remaining parts of each of the following triangles with given parts.
a. $\quad a=5, b=8, \alpha=30^{\circ}$
b. $a=5, b=6, c=9$
c. $\quad \alpha=40^{\circ}, b=5, c=6$
d. $\alpha=40^{\circ}, \beta=30^{\circ}, c=5$
2. For each of the followings, sketch the graph, find center (if applicable), focus (or foci), equation of directrix (if applicable), vertex (or vertices), end-points of the minor axis (if applicable), equation of oblique asymptotes (if applicable).
a. $x^{2}-4 x=2 y$
b. $y^{2}-2 y=8 x-1$
c. $x^{2}+9 y^{2}+6 x-18 y+9=0$
d. $x^{2}-9 y^{2}+6 x-18 y+9=0$
e. $-x^{2}+9 y^{2}+6 x-18 y+9=0$
f. $-2 x^{2}-3 y^{2}+8 x-6 y=5$
3. Find the equation of a parabola with focus $F(-2,2)$ and directrix $x=2$.
4. Find the equation of a geometrical figure that is the collection of all points in the plane whose sum of distances from two fixed points $F_{1}(-1,2)$ and $F_{2}(3,2)$ are always 12 .
5. Find the equation of a geometrical figure that is the collection of all points in the plane whose difference of distances from two fixed points $F_{1}(-1,2)$ and $F_{2}(3,2)$ are always ± 12.
6. Express each sum using summation notation.
a. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
b. $\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{8}+\ldots$
7. Find the sum of the first 20 terms of an arithmetic sequences whose $4^{\text {th }}$ term is 12 and $9^{\text {th }}$ term is 8 .
8. Find the sum of the first 20 terms of a geometric sequences whose $4^{\text {th }}$ term is 2 and $6^{\text {th }}$ term is 3 . (there are two possible answers!)
9. Find the sum of an infinite geometric series whose $1^{\text {st }}$ term is 2 and whose $3^{\text {rd }}$ term is $\frac{1}{2}$. (there are two possible answers!)
10. Use Mathematical induction to prove each of the followings.
a. $\quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
b. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
